

- Applied Research and Development
- Addressing Gaps in State-of-the-Practice
- Transfer State-of-Art to State-of the-Practice

Problem

- Corps has 200 dams and 73 intake towers in areas with significant seismic hazards
- Most dams were constructed when earthquake engineering was in its infancy
- Using current technology, most of these would be judged seismically inadequate
- Remediation costs of these structures could reach \$20 billion

Seismic zone map showing SMIP project sites

Purpose

To improve our ability to predict the performance of a dam under seismic loads, and to improve our ability to design

and construct cost-effective remediation

Major Thrusts

- Engineering geology / seismology
- Geotechnical earthquake engineering
- Structural earthquake engineering

Target Structures

- Embankment dams
- Concrete dams
- Intake tower / outlet works

Mormon Island Dam, CA remediation

Sardis Dam, MS remediation

Interagency Coordination

- National Earthquake Hazard Reduction Program, focused on buildings and lifelines, BSSC, FEMA, USGS, NIST, NSF - MCEER, PEER, MAEC and Universities
- FHWA Highway Seismic Research Programs (MCEER)
- Leveraging with NSF, Corps Districts, US Bureau of Reclamation, BC Hydro
- UJNR US-Japan Panel on Wind and Seismic Effects, EPRI, CALTRANS, NSTC, SNDR

Earthquake Ground Motions

Site Characterization

Remediation

Research Strategy: Embankment Dams

Ground Motions

Geology / Seismology

Design EQ Ground Motion Analysis System

Site Characterization

Shear Wave Velocity Database
Geophysical Methods
Penetration Testing

Performance Assessment

Newmark Analyses

Behavior of Liquefying Soils -Failure Mechanisms & Damage Assessment -

Primary Analysis Tool

Large Deformation
Analysis of Embankment

Assessment & Remediation

Phase II

Seismic Evaluation and Rehabilitation Program

Research Strategy: Concrete Dams & Outlet Works

Research Strategy: Geological-Seismological Investigations

 Continuing transition of geologic & seismologic research to engineeringrelevant data

 Incorporated latest knowledge into methods for geologicalseismological evaluations of earthquake hazards enabling accurate site-specific ground motions for Corps projects

Earthquake Reconnaissance - Turkey & Taiwan

Turkey

- Observed silt liquefaction
- Observed delayed settlement

Taiwan

- Best data
- Large event
- Ground Motions
- Full-scale test
- Dam Performance
- Hydrodynamics

Taiwan Earthquake Photos

Design Earthquake Ground Motion Analysis

System (DEQAS)

Modular, Windows-based tool box

- Site-specific seismic hazard assessment
- USGS NEHRP map data incorporated
- Corps Guidance on-line
- Modify spectra, records, frequency, time domain
- Large suite of accelerograms on line
- Large suite of attenuation functions on line
- User-interactive graphics
- Site response module (SHAKE)
- PSHA module
- Deaggregated data for cities and dams on line

Analysis and Design System

Earthquake Engineering Embankment Dams

Research Thrust Areas

- Site Characterization
- Liquefaction
- Large Deformation Analysis

Research

1971 Slide in Lower San Fernando Dam

Geophysical Methods for Site Characterization and Measurement of Material Properties: Waterborne Geophysics

- Subsurface stratigraphy
 - Material type
 - Distribution
 - Volume
 - Total density
 - Stiffness, elastic properties
 - Void Ratio
- High-resolution side-scan image mosaics
 - Pre- and post- earthquake conditions, underwater

Subbottom Profiling System

Geophysical Methods for Site Characterization and Measurement of Material Properties:

Land-based Geophysics

High-resolution tomography

• 3-D stratigraphy

Engineering properties

Liquefaction properties

Success Dam, CA borehole tomography

Site Characterization: Penetration Testing

- BPT, LPT, SPT, Chamber Tests
- CPT- Olsen, Material type, peak strength, residual strength, CRR1, N₁ (60)

CPT soil behavior chart

Large-scale laboratory in situ penetration testing chamber

BPT Drill Rig

Comparison of Penetration Tests

- Shear Wave Velocity Database
 - Developed to support screening analysis, on web and DEQAS
- Newmark Sliding Block Analysis
 - Validated by compilation and investigation of >300 case histories, >130 dams
- Criteria for identifying liquefiable fine-

grained soils - liquid limit off 3%

o 20:SPTN-valu160(blow-s/ii) 120 200	
° °	
l 1	
l 1	
	e.
- Mar -22	_
av. - 1868 g ²	
	_
	e e
	e
	⁸ (யத) ⁸
	νō
g == 1	5
	₫ .
h	
=	e.
I ∞] °	
l 1 " " " "	
I	_
l	ь
7 ° +	
2203 - WBS Darg [
" Vs = 407 H^0.236 — ac	e
- Ho. gara = 1297	
R=0,611	
l " եջ	e.
<u> </u>	-
0 100 200 200 400 800 800	
(blows/m)	
(8104 5111)	

III Table: C:\wanda\vsplots\WESP.DBF																
	DEPTH	DWT	SWV	PWV	N	N1	N60	N160	MATL	G0	GA	Z	GR	LL	PI	DAT
1	11.00	44.00	995	-1	11	13	11	13	SPSM	A_	QP	1	-1	-1	-1	WES
2	12.50	44.00	1005	-1	37	42	37	42	SPSM	A	QP	1	-1	-1	-1	WES
3	14.00	44.00	1015	-1	89	95	89	95	SPSM	A_	QP	1	-1	-1	-1	WES
4	23.00	44.00	1075	-1	63	54	63		SPSM		QP	1	-1	-1	-1	WES
5	26.50	44.00	1090	-1	69	56	69	56	SPSM	A_	QP	1	-1	-1	-1	WES
6	51.00	44.00	1125	-1	45	28	45	28	SCSM	A_	QP	1	-1	-1	-1	WES
7	5.50	55.00	705	-1	22	35	22	35	SM	FC	R	4	-1	-1	-1	WES
8	11.50	55.00	735	-1	18	21	18	21	SM	FC	R	4	-1	-1	-1	WES
9	16.00	55.00	765	-1	20	20	20	20	SM	FC	R	4	-1	-1	-1	WES
10	20.50	55.00	840	-1	22	20	22	20	SM	FC	R	4	-1	-1	-1	WES
11	25.00	55.00	995	-1	18	15	18	15	SM	FC	R	4	-1	-1	-1	WES
12	31.00	55.00	1030	-1	23	17	23	17	SM	FC	R	4	-1	-1	-1	WES
13	35.50	55.00	1025	-1	39	28	39	28	SM	FC	R	4	-1	-1	-1	WES
14	40.00	55.00	1025	-1	41	28	41	28	SM	FC	R	4	-1	-1	-1	WES
15	46.00	55.00	1025	-1	25	16	25	16	SC	FC	R	4	-1	-1	-1	WES
16	50.50	55.00	1020	-1	22	13	22	13	SC	FC	R	4	-1	-1	-1	WES
17	55.00	55.00	990	-1	8	4	8	4	SC	A_	QH	4	-1	-1	-1	WES
18	61.00	55.00	915	-1	43	24	43	24	SPSM	A_	QH	4	-1	-1	-1	WES
19	65.50	55.00	1020	-1	69	37	69	37	SWSN	A_	QH	4	-1	-1	-1	WES
20	71.50	55.00	1055	-1	83	44	83	44	ML	A_	QH	4	-1	-1	-1	WES
21	76.00	55.00	1065	-1	120	62	120	62	SM	A_	QH	4	-1	-1	-1	WES
22	80.50	55.00	1080	-1	120	61	120	61	SM	Α_	QH	4	-1	-1	-1	WES
23	12.50	44.00	580	1520	9	10	9	10	СН	A_	QH	4	-1	-1	-1	WES
24	13.50	44.00	590	1510	8	9	8	9	СН	Α_	QH	4	-1	-1	-1	WES
25	20.50	44.00	650	1280	10	9	10	9	СН	A_	QH	4	-1	-1	-1	WES
26	26.00	44.00	990	1725	41	34	41	34	СН	A_	QH	4	-1	-1	-1	WES
27	32.00	44.00	990	2475	31	24	31	24	ML	Α_	QH	4	-1	-1	-1	WES
28	39.00	44.00	940	4560	38	27	38	27	SPSM	Α_	QH	4	-1	-1	-1	WES
29	6.00	125.00	810	2560	27	41	27	41	CL	FC	R	2	-1	-1	-1	WES
⇁	_															
	C:\wanda\vsplo															

Earthquake Engineering Research: Centrifuge Modeling

Research into the behavior of liquefying soils

Earthquake shaker mounted on centrifuge arm

Wavelet analysis of soil response to earthquake loading response

Dynamic Induced Residual Excess Pore Pressure Limit

• Failure Mechanisms and Damage:
Improve state-of-the-practice for
determining performance of dams in
response to liquefaction of soils

Slide in Lower San Fernando Dam - 1971

Extent of liquefiable layer

 Seismic Stability and Deformations of Earth Structures and Foundations

Use of numerical modeling to improve estimation of post-earthquake

deformation

Fully coupled model, pore pressure

generation with stress

Particle Element Modeling

30

Pore Pressure History